成都随如科技有限公司

公司新闻

行业动态

通知公告

超精密加工的相关知识

时间:2017.04.08  来源:随如科技


1492410593108156.jpg

简介

20世纪60年代为了适应核能、大规模集成电路、激光和航天等尖端技术的需要而发展起来的精度极高的加工技术。超精密加工的精度比传统的精密加工提高了一个以上的数量级。到20世纪80年代,加工尺寸精度可达10纳米(1×10-8米),表面粗糙度达1纳米。超精密加工对工件材质、加工设备、工具、测量和环境等条件都有特殊的要求,需要综合应用精密机械、精密测量、精密伺服系统、计算机控制以及其他先进技术。工件材质必须极为细致均匀,并经适当处理以消除内部残余应力,保证高度的尺寸稳定性,防止加工后发生变形。加工设备要有极高的运动精度,导轨直线性和主轴回转精度要达到0.1微米级,微量进给和定位精度要达到0.01微米级。对环境条件要求严格,须保持恒温、恒湿和空气洁净,并采取有效的防振措施。加工系统的系统误差和随机误差都应控制在 0.1微米级或更小。这些条件是靠综合应用精密机械、精密测量、精密伺服系统和计算机控制等各种先进技术获得的。 

发展方向

高精度与高效率精密加工和超精密加工虽能获得极高的表面质量和表面完整性,但以牺牲加工效率为保证。

探索能兼顾效率与精度的加工方法?成为超精密加工领球研究人员的目标。如半固着磨粒加工、电解磁力研磨、磁流变磨料流加工等复合加工方法的诞生。

我国现状

我国精密和超精密加工发展策略我国精密和超精密加工经过数十年的努力,日趋成熟。不论是精密机床、金刚石工具,还是精密加工工艺已形成了一整套完整的精密制造技术系统,为推动机械制造向更高层次发展奠定了基础。正在向纳米级精度或毫微米精度迈进,其前景十分令人鼓舞。随着科学技术的飞速发展和市场竞争日益激烈?越来越多的制造业开始将大量的人力、财力和物力投入先进的制造技术和先进的制造模式的研究和实施策略之中。

超精密发展

超精密加工的发展经历了如下三个阶段。

(1)20世纪50年代至80年代为技术开创期。20世纪50年代末,出于航天、国防等尖端技术发展的需要,美国率先发展了超精密加工技术,开发了金刚石刀具超精密切削——单点金刚石切削(Single point diamond tuming,SPDT)技术,又称为“微英寸技术”,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。从1966年起,美国的unionCarbide公司、荷兰Philips公司和美国LawrenceLivemoreLaboratories陆续推出
  各自的超精密金刚石车床,但其应用限于少数大公司与研究单位的试验研究,并以国防用途或科学研究用途的产品加工为主。这一时期,金刚石车床主要用于铜、铝等软金属的加工,也可以加工形状较复杂的工件,但只限于轴对称形状的工件例如非球面镜等。
  (2)20世纪80年代至90年代为民间工业应用初期。在20世纪80年代,美国政府推动数家民间公司Moore Special Tool和Pneumo Precision公司开始超精密加工设备的商品化,而日本数家公司如Toshiba和Hitachi与欧洲的Cmfield大学等也陆续推出产品,这些设备开始面向一般民间工业光学组件商品的制造。但此时的超精密加工设备依然高贵而稀少,主要以专用机的形式订作。在这一时期,除了加工软质金属的金刚石车床外,可加工硬质金属和硬脆性材料的超精密金刚石磨削也被开发出来。该技术特点是使用高刚性机构,以极小切深对脆性材料进行延性研磨,可使硬质金属和脆性材料获得纳米级表面粗糙度。当然,其加工效率和机构的复杂性无法和金刚石车床相比。20世纪80年代后期,美国通过能源部“激光核聚变项目”和陆、海、空三军“先进制造技术开发计划”对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。美国LLNL国家实验室研制出的大型光学金刚石车床(Large optics diamond turning machine,LODTM)成为超精密加工史上的经典之作。这是一台最大加工直径为1.625m的立式车床,定位精度可达28nm,借助在线误差补偿能力,可实现长度超过1m、而直线度误差只有士25nm的加工。
  (3)20世纪90年代至今为民间工业应用成熟期。从1990年起,由于汽车、能源、医疗器材、信息、光电和通信等产业的蓬勃发展,超精密加工机的需求急剧增加,在工业界的应用包括非球面光学镜片、Fresnel镜片、超精密模具、磁盘驱动器磁头、磁盘基板加工、半导体晶片切割等。在这一时期,超精密加工设备的相关技术,例如控制器、激光干涉仪、空气轴承精密主轴、空气轴承导轨、油压轴承导轨、摩擦驱动进给轴也逐渐成熟,超精密加工设备变为工业界常见的生产机器设备,许多公司,甚至是小公司也纷纷推出量产型设备。此外,设备精度也逐渐接近纳米级水平,加工行程变得更大,加工应用也逐渐增广,除了金刚石车床和超精密研磨外,超精密五轴铣削和飞切技术也被开发出来,并且可以加工非轴对称非球面的光学镜片。
  世界上的超精密加工强国以欧美和日本为先,但两者的研究重点并不一样。欧美出于对能源或空间开发的重视,特别是美国,几十年来不断投入巨额经费,对大型紫外线、x射线探测望远镜的大口径反射镜的加工进行研究。如美国太空署(NASA)推动的太空开发计划,以制作1m以上反射镜为目标,目的是探测x射线等短波(O.1~30nm)。由于X射线能量密度高,必须使反射镜表面粗糙度达到埃级来提高反射率。此类反射镜的材料为质量轻且热传导性良好的碳化硅,但碳化硅硬度很高,须使用超精密研磨加工等方法。日本对超精密加工技术的研究相对美、英来说起步较晚,却是当今世界上超精密加工技术发展最快的国家。日本超精密加工的应用对象大部分是民用产品,包括办公自动化设备、视像设备、精密测量仪器、医疗器械和人造器官等。日本在声、光、图像、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,具有优势,甚至超过了美国。日本超精密加
  工最初从铝、铜轮毂的金刚石切削开始,而后集中于计算机硬盘磁片的大批量生产,随后是用于激光打印机等设备的多面镜的快速金刚石切削,之后是非球面透镜等光学元件的超精密切削。l982年上市的EastnlanKodak数码相机使用的一枚非球面透镜引起了日本产业界的广泛关注,因为1枚非球面透镜至少可替代3枚球面透镜,光学成像系统因而小型化、轻质化,可广泛应用于照相机、录像机、工业电视、机器人视觉、CD、VCD、DvD、投影仪等光电产品。因而,非球面透镜的精密成形加工成为日本光学产业界的研究热点。
  尽管随时代的变化,超精密加工技术不断更新,加工精度不断提高,各国之间的研究侧重点有所不同,但促进超精密加工发展的因素在本质上是相同的。这些因素可归结如下。
  (1)对产品高质量的追求。为使磁片存储密度更高或镜片光学性能更好,就必须获得粗糙度更低的表面。为使电子元件的功能正常发挥,就要求加工后的表面不能残留加工变质层。按美国微电子技术协会(SIA)提出的技术要求,下一代计算机硬盘的磁头要求表面粗糙度Ra≤0.2nm,磁盘要求表面划痕深度h≤lnm,表面粗糙度Ra≤0.1nmp。1983年TANIGUCHI对各时期的加工精度进行了总结并对其发展趋势进行了预测,以此为基础,BYRNE描绘了20世纪40年代后加工精度的发展。

(2)对产品小型化的追求。伴随着加工精度提高的是工程零部件尺寸的减小。从1989~2001年,从6.2kg降低到1.8kg。电子电路高集成化要求降低硅晶片表面粗糙度、提高电路曝光用镜片的精度、半导体制造设备的运动精度。零部件的小型化意味着表面积与体积的比值不断增加,工件的表面质量及其完整性越来越重要。

(3)对产品高可靠性的追求。对轴承等一边承受载荷一边做相对运动的零件,降低表面粗糙度可改善零件的耐磨损性,提高其工作稳定性、延长使用寿命。高速高精密轴承中使用的Si3N4。陶瓷球的表面粗糙度要求达到数纳米。加工变质层的化学性质活泼,易受腐蚀,所以从提高零件耐腐蚀能力的角度出发,要求加工产生的变质层尽量小。
  (4)对产品高性能的追求。机构运动精度的提高,有利于减缓力学性能的波动、降低振动和噪声。对内燃机等要求高密封性的机械,良好的表面粗糙度可减少泄露而降低损失。二战后,航空航天工业要求部分零件在高温环境下工作,因而采用钛合金、陶瓷等难加工材料,为超精密加工提出了新的课题。


返回列表